Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 84
IEEE journal of the Electron Devices Society, 2023-11, p.1-1
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Self-Organizing Mapping Neural Network Implementation Based on 3D NAND Flash for Competitive Learning
Ist Teil von
  • IEEE journal of the Electron Devices Society, 2023-11, p.1-1
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Self-organizing Map (SOM) neural network is a prominent algorithm in unsupervised machine learning, which is widely used for data clustering, high-dimensional visualization, and feature extraction. However, the hardware implementation of SOM is limited by the von Neumann bottleneck. Herein, a SOM neural network is implemented by the combination of 3D NAND flash memory arrays and in-memory Euclidean distance (ED) calculation. The weights in the SOM network are mapped to the conductance of the 3D NAND differential pair. It is experimentally demonstrated that the differential pair in 3D NAND flash array possesses superior characteristics for neuromorphic computing during increasing and decreasing synaptic weight. Using the 3D NAND-based SOM, a competitive learning neural network is established and used for the unsupervised classification of a set of Gaussian distribution data points. The experimental results illustrate the excellent performance and efficiency of the proposed architecture, highlighting the potential of 3D NAND-based in-memory computing for artificial intelligence applications.
Sprache
Englisch
Identifikatoren
eISSN: 2168-6734
DOI: 10.1109/JEDS.2023.3337399
Titel-ID: cdi_ieee_primary_10333078

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX