Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A Machine Learning UAV Deployment Approach for Emergency Cellular Networks
Ist Teil von
ICC 2023 - IEEE International Conference on Communications, 2023, p.5683-5688
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
This paper proposes a scheme for rapidly deploying a UAV-enabled emergency cellular network (UECN) in disaster scenarios, such as earthquakes or floods, to support rescue operations. The unsupervised placement of UAV aerial base stations (ABSs) is achieved through machine learning (ML) techniques. Specifically, the k-medoids algorithm is utilized to cluster ground users in the disaster area and determine the minimum number of ABSs and their position. ABS's altitude is defined based on its capacity capabilities and propagation environment. The UECN cooperates with undamaged cellular infrastructure via joint coordinated multipoint transmission and reception (CoMP) with neighbouring functional terrestrial macrocell base stations (TBSs) to improve end-user signal quality. Finally, the proposed scheme is comparatively evaluated through simulation, and the results demonstrate its efficiency even in the presence of users and ABSs positioning errors.