Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 319
2023 IEEE International Conference on Multimedia and Expo (ICME), 2023, p.2225-2230
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fixing Domain Bias for Generalized Deepfake Detection
Ist Teil von
  • 2023 IEEE International Conference on Multimedia and Expo (ICME), 2023, p.2225-2230
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Generalizing deepfake detection has posed a great challenge to digital media forensics, as inferior performance is obtained when training sets and testing sets are domain-mismatched. In this paper, we show that a CNN-based detection model can significantly improve performance by fixing domain bias. Specifically, we propose a novel Fixing Domain Bias network (FDBN). FDBN does not rely on manual features, but is based on three core designs. Firstly, a domain-invariant network based on randomly stylized normalization is devised to constrain the domain discrepancy in the feature space. Then, through adversarial learning, a generalizing representation in the stylized distribution is learned to enhance the shared feature bias among manipulation methods in the domain-specific network. Finally, to encourage equality of biases among different domains, we utilize the bias extrapolation penalty strategy by suppressing the expected bias on the extremely-performing domains. Extensive experiments demonstrate that our framework achieves effectiveness and generalization towards unseen face forgeries.
Sprache
Englisch
Identifikatoren
eISSN: 1945-788X
DOI: 10.1109/ICME55011.2023.00380
Titel-ID: cdi_ieee_primary_10219848

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX