Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections
Ist Teil von
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, p.14540-14548
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Xplore
Beschreibungen/Notizen
We address the problem of detecting tree rings in microscopy images of shrub cross sections. This can be regarded as a special case of the instance segmentation task with several unique challenges such as the concentric circular ring shape of the objects and high precision requirements that result in inadequate performance of existing methods. We propose a new iterative method which we term Iterative Next Boundary Detection (INBD). It intuitively models the natural growth direction, starting from the center of the shrub cross section and detecting the next ring boundary in each iteration step. In our experiments, INBD shows superior performance to generic instance segmentation methods and is the only one with a built-in notion of chronological order. Our dataset and source code are available at http://github.com/alexander-g/INBD.