Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 47
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, p.14224-14234
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fix the Noise: Disentangling Source Feature for Controllable Domain Translation
Ist Teil von
  • 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, p.14224-14234
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at LeeDongYeun/FixNoise.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR52729.2023.01367
Titel-ID: cdi_ieee_primary_10203400

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX