Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The paper proposes a framework to identify and avoid the coverage hole in an indoor industry environment. We assume an edge cloud co-located controller that followers the Automated Guided Vehicle (AGV) movement on a factory floor over a wireless channel. The coverage holes are caused due to blockage, path-loss, and fading effects. An AGV in the coverage hole may lose connectivity to the edge-cloud and become unstable. To avoid connectivity loss, we proposed a framework that identifies the position of coverage hole using a Support-Vector Machine (SVM) classifier model and constructs a binary coverage hole map incorporating the AGV trajectory re-planning to avoid the identified coverage hole. The AGV's re-planned trajectory is optimized and selected to avoid coverage hole the shortest coverage-hole-free trajectory. We further investigated the look-ahead time's impact on the AGV's re-planned trajectory performance. The results reveal that an AGV's re-planned trajectory can be shorter and further optimized if the coverage hole position is known ahead of time.