Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 160
IEEE communications letters, 2023-10, Vol.27 (10), p.1-1
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Feature Fusion Convolution-Aided Transformer for Automatic Modulation Recognition
Ist Teil von
  • IEEE communications letters, 2023-10, Vol.27 (10), p.1-1
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2023
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Automatic Modulation Recognition (AMR) is becoming increasingly important due to its key role in wireless communications. In order to enrich the feature information and reduce computational complexity, a novel feature fusion convolution-aided transformer (FCAformer) approach is proposed in this paper. To enhance the differences between samples, we adopt Markov Transformation Field (MTF), which can extract potential correlation features between signal sequences and combine them with I/Q sequences to generate more information rich data as input for the transformer. We propose a novel patchify module that reduces invalid features and computational complexity by performing feature extraction. We also propose a convolution-aided encoder module consisting of an improved attention mechanism and a convolutional residual connection to improve performance through local-global feature fusion and further reduce the parameters. Experimental results on RadioRML2016.10a show that the proposed AMR method has both higher recognition accuracy and lower parameters than other contrastive methods.
Sprache
Englisch
Identifikatoren
ISSN: 1089-7798
eISSN: 1558-2558
DOI: 10.1109/LCOMM.2023.3298941
Titel-ID: cdi_ieee_primary_10195842

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX