Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
CompoundEye: A 0.24-4.17 TOPS Scalable Multi-Node DNN Processor for Image Recognition
Ist Teil von
2023 IEEE International Symposium on Circuits and Systems (ISCAS), 2023, p.1-5
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
This paper proposes a scalable DNN processor that can be flexibly reconfigured to maximize inference efficiency on a wide range of DNN models. The processor consists of 18 computing nodes with various precision modes support. To improve the computation throughput, we propose a sub-image parallelization strategy, where the original input image is divided into multiple sub-images and computed on multiple nodes in parallel. In addition, the cross-layer pipeline is implemented to improve resource utilization. The proposed processor is implemented in 28nm CMOS technology and achieves a peak performance of 4.17 TOPS and an energy efficiency of 2.08 TOPS/W.