Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Deep Reinforcement Learning for Latency-Sensitive Communication With Adaptive Redundant Retransmissions
Ist Teil von
IEEE transactions on communications, 2023-05, Vol.71 (5), p.2771-2783
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
This paper studies packet repetition strategies over erasure channels with memory and a long feedback delay. The problem is initially formulated as a communications problem where a source wishes to transmit one message packet to a destination while minimizing both the delay and the number of transmissions. At each time instant, the sender is provided a delayed acknowledgement feedback about past attempts, and must decide whether to attempt a new transmission or not. This problem is then re-formulated as an episodic reinforcement learning problem, where an agent attempts to learn the optimal transmission policy, provided delayed feedback about past transmission attempts. The agent is helped by a channel estimator, which attempts to capture the channel memory and use that to predict probabilities of erasures in a future window. This channel estimator is also data-driven and learns the channel model without any a priori channel knowledge. The paper presents a lower bound on the achievable trade-off between delay and number of transmissions for any channel modeled as a Markov process. Experimental results show that the combination of the proposed channel estimator and the agent can noticeably outperform naive strategies for channels with memory, and achieves results close to the lower bound.