Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 277
IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12107-12116
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Data-Driven-Based Cooperative Resilient Learning Method for Nonlinear MASs Under DoS Attacks
Ist Teil von
  • IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12107-12116
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2024
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • In this article, we consider the cooperative tracking problem for a class of nonlinear multiagent systems (MASs) with unknown dynamics under denial-of-service (DoS) attacks. To solve such a problem, a hierarchical cooperative resilient learning method, which involves a distributed resilient observer and a decentralized learning controller, is introduced in this article. Due to the existence of communication layers in the hierarchical control architecture, it may lead to communication delays and DoS attacks. Motivated by this consideration, a resilient model-free adaptive control (MFAC) method is developed to withstand the influence of communication delays and DoS attacks. First, a virtual reference signal is designed for each agent to estimate the time-varying reference signal under DoS attacks. To facilitate the tracking of each agent, the virtual reference signal is discretized. Then, a decentralized MFAC algorithm is designed for each agent such that each agent can track the reference signal by only using the obtained local information. Finally, a simulation example is proposed to verify the effectiveness of the developed method.
Sprache
Englisch
Identifikatoren
ISSN: 2162-237X, 2162-2388
eISSN: 2162-2388
DOI: 10.1109/TNNLS.2023.3252080
Titel-ID: cdi_ieee_primary_10068126

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX