Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 64

Details

Autor(en) / Beteiligte
Titel
A PV‐approach for dense water formation along fronts: Application to the Northwestern Mediterranean
Ist Teil von
  • Journal of geophysical research. Oceans, 2017-02, Vol.122 (2), p.995-1015
Ort / Verlag
Washington: Blackwell Publishing Ltd
Erscheinungsjahr
2017
Link zum Volltext
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • The mechanisms of dense water formation ( σ>29.0 kg m−3) at work in the baroclinic cyclonic gyre of the North‐Western Mediterranean basin are investigated through a PV‐budget (PV: Potential Vorticity). The PV‐budget is diagnosed from an eddy‐resolving ( 1/36o) ocean simulation driven in surface by hourly air‐sea fluxes provided by a nonhydrostatic atmospheric model at 2.5 km resolution. The PV‐budget is controlled by the diabatic, frictional, and advective PV‐fluxes. Around the gyre the surface diabatic PV‐flux dominates the PV‐destruction, except along the northern branch of the North Current where the surface frictional PV‐flux is strongly negative. In this region, the bathymetry stabilizes the front and maintains the current northerly in the same direction as the dominant northerly wind. This configuration leads to optimal wind‐current interactions and explains the preponderance of frictional PV‐destruction on diabatic PV‐destruction. This mechanical forcing drives a cross‐front ageostrophic circulation which subducts surface low‐PV waters destroyed by wind on the dense side of the front and obducts high‐PV waters from the pycnocline on the light side of the front. The horizontal PV‐advections associated with the geostrophic cyclonic gyre and turbulent entrainment at the pycnocline also contribute to the PV‐refueling in the frontal region. The surface nonadvective PV‐flux involves energy exchanges down to −1400 W m−2 in the frontal zone: this flux is 3.5 times stronger than atmospheric buoyancy flux. These energy exchanges quantify the coupling effects between the surface atmospheric forcing with the oceanic frontal structures at submesoscale. Key Points The mechanisms of dense water formation along the baroclinic gyre are investigated through a PV‐budget Along the northern branch of the North Current, the surface frictional PV‐flux drives a cross‐front ageostrophic circulation The surface non‐advective PV‐flux involves energy exchanges down to −1400 W/m2

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX