Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 89
Discrete Applied Mathematics, 2016-10, Vol.212, p.48-60
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
The power of greedy algorithms for approximating Max-ATSP, Cyclic Cover, and superstrings
Ist Teil von
  • Discrete Applied Mathematics, 2016-10, Vol.212, p.48-60
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2016
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The Maximum Asymmetric Travelling Salesman Problem (Max-ATSP), which asks for a Hamiltonian path of maximum weight covering a digraph, and the Maximum Compression(Max-Comp), which, for a finite language P≔{s1,…,sp}, asks for w, a superstring of P minimising ∑si∈S|si|−|w|, are both difficult to approximate (Max-SNP hard). Solving Max-ATSP on the overlap graph of the words of P solves Max-Comp. Many approximate algorithms have been designed to improve their approximation ratios, but these are increasingly complex. Often, these rely on solving the pendant problems where the cover is made of cycles instead of single path (Max-CC  and SCCS). Thus, the greedy algorithm remains an attractive solution for its simplicity and ease of implementation. Here, using the full power of subset systems, we provide a unified approach for proving simply the approximation ratios of a greedy algorithm for these four problems. In addition, we introduce two new problems dealing with the case of cyclic input words, and exhibit a greedy approximation ratio for them. The Maximum Partitioned Hamiltonian Path  generalises the Maximum Asymmetric Travelling Salesman Problem  when the nodes are partitioned into classes and the path must contain one element of each class. The Maximum Cyclic Compression  is the natural counterpart of Maximum Compression  for cyclic strings.
Sprache
Englisch
Identifikatoren
ISSN: 0166-218X
eISSN: 1872-6771
DOI: 10.1016/j.dam.2015.06.003
Titel-ID: cdi_hal_primary_oai_HAL_lirmm_01286943v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX