Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 136857

Details

Autor(en) / Beteiligte
Titel
Bubble detection in liquid metal by perturbation of eddy currents: Model and experiments
Ist Teil von
  • Journal of applied physics, 2023-10, Vol.134 (13)
Ort / Verlag
American Institute of Physics
Erscheinungsjahr
2023
Link zum Volltext
Quelle
AIP Journals Complete
Beschreibungen/Notizen
  • A model has been developed to predict the response of an eddy current flow meter (ECFM) to the passage of a non-conductive inclusion moving in a cylindrical tube filled with a liquid metal. The model can be solved analytically for small inclusion diameters and moderate AC frequencies of the excitation signal. This condition is expressed as vbSω≪1, where vb is the dimensionless inclusion volume and Sω is a function of the ratio between the characteristic length of the system and the penetration depth of the magnetic field. The magnetic induction equation for this problem has also been solved numerically. A very good agreement between the analytical model and numerical solutions has been found for vbSω≪1. Two experimental setups have been designed. First, the ECFM model has been validated by comparing the response due to the passage of traveling beads of known diameters in a low melting point alloy. In a second experiment, the diameters of ascending argon bubbles have been estimated with the ECFM model. The numerical model predicts the gas volume with very good accuracy in the range of bubble diameters studied, between 1.5 and 6 mm, while the analytical model only deviates significantly from the experimental data when vbSω≳0.1. Moreover, we establish that the ECFM can also measure the radial deviation of the bubble trajectory, and the results are consistent with the theoretical limit for isolated bubbles between the regimes of oscillating/zigzag motion of ellipsoidal bubbles and non-oscillating motion of spherical bubbles. Another observation is that the dependence of the ECFM response on the shape of the bubble is negligible; indeed, the ECFM response is well approximated by a linear relation with the bubble volume as is assumed in the analytical model. Finally, an estimation of the terminal rising velocity of bubbles was also carried out.
Sprache
Englisch
Identifikatoren
ISSN: 0021-8979
eISSN: 1089-7550
DOI: 10.1063/5.0169208
Titel-ID: cdi_hal_primary_oai_HAL_hal_04573526v1
Format
Schlagworte
Physics

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX