Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 153

Details

Autor(en) / Beteiligte
Titel
CoNIC Challenge: Pushing the frontiers of nuclear detection, segmentation, classification and counting
Ist Teil von
  • Medical image analysis, 2024-02, Vol.92, p.103047-103047, Article 103047
Ort / Verlag
Netherlands: Elsevier
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.
Sprache
Englisch
Identifikatoren
ISSN: 1361-8415
eISSN: 1361-8423
DOI: 10.1016/j.media.2023.103047
Titel-ID: cdi_hal_primary_oai_HAL_hal_04408256v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX