Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations
Ist Teil von
The Science of the total environment, 2018-02, Vol.613-614, p.196-207
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Primary consumers play a key role in coastal ecosystems by transferring organic matter from primary producers to predators. Among them, suspension-feeders, like bivalve molluscs are widely used in trophic web studies. The main goal of this study was to investigate variations of C and N elemental and isotopic ratios in common bivalves (M. edulis, M. galloprovincialis, and C. gigas) at large spatial (i.e. among three coastal regions) and different temporal (i.e. from seasonal to multi-decadal) scales in France, in order to identify potential general or specific patterns and speculate on their drivers.
The observed spatial variability was related to the trophic status of the coastal regions (oligotrophic Mediterranean Sea versus meso- to eutrophic English Channel and Atlantic ocean), but not to ecosystem typology (estuaries, versus lagoons versus bays versus littoral systems). Furthermore, it highlighted local specificities in terms of the origin of the POM assimilated by bivalves (e.g., mainly continental POM vs. marine phytoplankton vs. microphytobenthic algae). Likewise, seasonal variability was related both to the reproduction cycle for C/N ratios of Mytilus spp. and to changes in trophic resources for δ13C of species located close to river mouth. Multi-decadal evolution exhibited shifts and trends for part of the 30-year series with decreases in δ13C and δ15N. Specifically, shifts appeared in the early 2000's, likely linking bivalve isotopic ratios to a cascade of processes affected by local drivers.
[Display omitted]
•Trophic status of coastal ecosystems explains the geographical variation of bivalve δ13C and δ15N.•Seasonal variability in C/N is related to reproduction cycle for mussel species.•δ13C seasonal variability is related to trophic resource variability for C. gigas and M. edulis.•Multi-decadal shifts and trends in C/N ratio, δ13C and δ15N were detected and likely related to climate change.