Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 395
Bulletin of earthquake engineering, 2023-05, Vol.21 (7), p.3163-3197
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A fault-based probabilistic seismic hazard model for Lebanon, controlling parameters and hazard levels
Ist Teil von
  • Bulletin of earthquake engineering, 2023-05, Vol.21 (7), p.3163-3197
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The present work develops a comprehensive probabilistic seismic hazard study for Lebanon, a country prone to a high seismic hazard since it is located along the Levant fault system. The historical seismicity has documented devastating earthquakes which have struck this area. Contrarily, the instrumental period is typical of a low-to-moderate seismicity region. The source model built is made of a smoothed seismicity earthquake forecast based on the Lebanese instrumental catalog, combined with a fault model including major and best-characterized faults in the area. Earthquake frequencies on faults are inferred from geological as well as geodetic slip rates. Uncertainties at every step are tracked and a sensitivity study is led to identify which parameters and decisions most influence hazard estimates. The results demonstrate that the choice of the recurrence model, exponential or characteristic, impacts the most the hazard, followed by the uncertainty on the slip rate, on the maximum magnitude that may break faults, and on the minimum magnitude applied to faults. At return periods larger than or equal to 475 years, the hazard in Lebanon is fully controlled by the sources on faults, and the off-fault model has a negligible contribution. We establish a source model logic tree populated with the key parameters, and combine this logic tree with three ground-motion models (GMMs) potentially adapted to the Levant region. A specific study is led in Beirut, located on the hanging-wall of the Mount Lebanon fault to understand where the contributions come from in terms of magnitudes, distances and sources. Running hazard calculations based on the logic tree, distributions of hazard estimates are obtained for selected sites, as well as seismic hazard maps at the scale of the country. Considering the PGA at 475 years of return period, mean hazard values found are larger than 0.3 g for sites within a distance of 20–30 km from the main strand of the Levant Fault, as well as in the coastal region in-between Saida and Tripoli (≥ 0.4 g considering the 84th percentile). The study provides detailed information on the hazard levels to expect in Lebanon, with the associated uncertainties, constituting a solid basis that may help taking decisions in the perspective of future updates of the Lebanese building code.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX