Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 3460

Details

Autor(en) / Beteiligte
Titel
State of the Art of Visual Analytics for eXplainable Deep Learning
Ist Teil von
  • Computer graphics forum, 2023-02, Vol.42 (1), p.319-355
Ort / Verlag
Oxford: Blackwell Publishing Ltd
Erscheinungsjahr
2023
Quelle
EBSCOhost Business Source Ultimate
Beschreibungen/Notizen
  • The use and creation of machine‐learning‐based solutions to solve problems or reduce their computational costs are becoming increasingly widespread in many domains. Deep Learning plays a large part in this growth. However, it has drawbacks such as a lack of explainability and behaving as a black‐box model. During the last few years, Visual Analytics has provided several proposals to cope with these drawbacks, supporting the emerging eXplainable Deep Learning field. This survey aims to (i) systematically report the contributions of Visual Analytics for eXplainable Deep Learning; (ii) spot gaps and challenges; (iii) serve as an anthology of visual analytical solutions ready to be exploited and put into operation by the Deep Learning community (architects, trainers and end users) and (iv) prove the degree of maturity, ease of integration and results for specific domains. The survey concludes by identifying future research challenges and bridging activities that are helpful to strengthen the role of Visual Analytics as effective support for eXplainable Deep Learning and to foster the adoption of Visual Analytics solutions in the eXplainable Deep Learning community. An interactive explorable version of this survey is available online at https://aware‐diag‐sapienza.github.io/VA4XDL. This survey systematically reports the contributions of Visual Analytics for eXplainable Deep Learning, spots gaps, serves as an anthology of visual analytical solutions ready to be exploited by the Deep Learning community, proves the degree of maturity, ease of integration, results for specific domains and finally identifies future research challenges.
Sprache
Englisch
Identifikatoren
ISSN: 0167-7055
eISSN: 1467-8659
DOI: 10.1111/cgf.14733
Titel-ID: cdi_hal_primary_oai_HAL_hal_03980917v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX