Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 6

Details

Autor(en) / Beteiligte
Titel
Predicting substitutions to modulate disorder and stability in coiled-coils
Ist Teil von
  • BMC bioinformatics, 2020-12, Vol.21 (S19)
Ort / Verlag
BioMed Central
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Abstract Background Coiled-coils are described as stable structural motifs, where two or more helices wind around each other. However, coiled-coils are associated with local mobility and intrinsic disorder. Intrinsically disordered regions in proteins are characterized by lack of stable secondary and tertiary structure under physiological conditions in vitro. They are increasingly recognized as important for protein function. However, characterizing their behaviour in solution and determining precisely the extent of disorder of a protein region remains challenging, both experimentally and computationally. Results In this work, we propose a computational framework to quantify the extent of disorder within a coiled-coil in solution and to help design substitutions modulating such disorder. Our method relies on the analysis of conformational ensembles generated by relatively short all-atom Molecular Dynamics (MD) simulations. We apply it to the phosphoprotein multimerisation domains (PMD) of Measles virus (MeV) and Nipah virus (NiV), both forming tetrameric left-handed coiled-coils. We show that our method can help quantify the extent of disorder of the C-terminus region of MeV and NiV PMDs from MD simulations of a few tens of nanoseconds, and without requiring an extensive exploration of the conformational space. Moreover, this study provided a conceptual framework for the rational design of substitutions aimed at modulating the stability of the coiled-coils. By assessing the impact of four substitutions known to destabilize coiled-coils, we derive a set of rules to control MeV PMD structural stability and cohesiveness. We therefore design two contrasting substitutions, one increasing the stability of the tetramer and the other increasing its flexibility. Conclusions Our method can be considered as a platform to reason about how to design substitutions aimed at regulating flexibility and stability.
Sprache
Englisch
Identifikatoren
ISSN: 1471-2105
eISSN: 1471-2105
DOI: 10.1186/s12859-020-03867-x
Titel-ID: cdi_hal_primary_oai_HAL_hal_03911459v1
Format
Schlagworte
Computer Science, Life Sciences, Physics

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX