Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Vaccine efficacy trials for Crimean-Congo haemorrhagic fever: Insights from modelling different epidemiological settings
Ist Teil von
Vaccine, 2022-09, Vol.40 (40), p.5806-5813
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Crimean-Congo haemorrhagic fever (CCHF) is a priority emerging pathogen for which a licensed vaccine is not yet available. We aim to assess the feasibility of conducting phase III vaccine efficacy trials and the role of varying transmission dynamics.
We calibrate models of CCHF virus (CCHFV) transmission among livestock and spillover to humans in endemic areas in Afghanistan, Turkey and South Africa. We propose an individual randomised controlled trial targeted to high-risk population, and use the calibrated models to simulate trial cohorts to estimate the minimum necessary number of cases (trial endpoints) to analyse a vaccine with a minimum efficacy of 60%, under different conditions of sample size and follow-up time in the three selected settings.
A mean follow-up of 160,000 person-month (75,000–550,000) would be necessary to accrue the required 150 trial endpoints for a target vaccine efficacy of 60 % and clinically defined endpoint, in a setting like Herat, Afghanistan. For Turkey, the same would be achieved with a mean follow-up of 175,000 person-month (50,000–350,000). The results suggest that for South Africa the low endemic transmission levels will not permit achieving the necessary conditions for conducting this trial within a realistic follow-up time. In the scenario of CCHFV vaccine trial designed to capture infection as opposed to clinical case as a trial endpoint, the required person-months is reduced by 70 % to 80 % in Afghanistan and Turkey, and in South Africa, a trial becomes feasible for a large number of person-months of follow-up (>600,000). Increased expected vaccine efficacy > 60 % will reduce the required number of trial endpoints and thus the sample size and follow-time in phase III trials.
Underlying endemic transmission levels will play a central role in defining the feasibility of phase III vaccine efficacy trials. Endemic settings in Afghanistan and Turkey offer conditions under which such studies could feasibly be conducted.