Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 73

Details

Autor(en) / Beteiligte
Titel
Electro-oxidation of secondary effluents from various wastewater plants for the removal of acetaminophen and dissolved organic matter
Ist Teil von
  • The Science of the total environment, 2020-10, Vol.738, p.140352-140352, Article 140352
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Electro-oxidation of acetaminophen (ACT) in three different doped secondary effluents collected from a conventional Municipal Waste Water Treatment Plant (MWWTP), a MWWTP using a membrane bioreactor (WWTP MBR) and a lab-scale MBR treating source-separated urine (Urine MBR) was investigated by electro-Fenton (EF) coupled with anodic oxidation (AO) using sub-stoichiometric titanium oxide anode (Ti4O7). After 8 h of treatment, 90 ± 15%, 76 ± 3.8% and 46 ± 1.3% of total organic carbon removal was obtained for MWWTP, MWWTP-MBR and Urine-MBR respectively, at a current intensity of 250 mA, pH of 3 and [Fe2+] = 0.2 mM. Faster degradation of ACT was observed in the WWTP MBR because of the lower amount of competitive organic matter, however, >99% degradation of ACT was obtained after 20 min for all effluents. The acute toxicity of the treated effluent was measured using Microtox® tests. Results showed an initial increase in toxicity, which could be assigned to formation of more toxic by-products than parent compounds. From 3D excitation and emission matrix fluorescence (3DEEM), different reactivity was observed according to the nature of the organic matter. Particularly, an increase of low molecular weight organic compounds fluorescence was observed during Urine MBR treatment. This could be linked to the slow decrease of the acute toxicity during Urine MBR treatment and ascribed to the formation and recalcitrance of toxic organic nitrogen and chlorinated organic by-products. By comparison, the acute toxicity of other effluents decreased much more rapidly. Finally, energy consumption was calculated according to the objective to achieve (degradation, absence of toxicity, mineralization). [Display omitted] •Biorefractory effluents were successfully treated by EF process coupled to AO.•3DEEM could be a global tool to investigate a domestic effluent along its treatment.•ACT, TOC, acute toxicity and 3DEEM evolution were monitored for different effluents.•Toxic recalcitrant by-products were identified during Urine MBR effluents treatment.
Sprache
Englisch
Identifikatoren
ISSN: 0048-9697
eISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2020.140352
Titel-ID: cdi_hal_primary_oai_HAL_hal_03490279v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX