Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 27

Details

Autor(en) / Beteiligte
Titel
OxRAM + OTS optimization for binarized neural network hardware implementation
Ist Teil von
  • Semiconductor science and technology, 2022-01, Vol.37 (1), p.14001
Ort / Verlag
IOP Publishing
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Abstract Low-power memristive devices embedded on graphics or central processing units logic core are a very promising non-von-Neumann approach to improve significantly the speed and power consumption of deep learning accelerators, enhancing their deployment on embedded systems. Among various non-ideal emerging neuromorphic memory devices, synaptic weight hardware implementation using resistive random-access memories (RRAMs) within 1T1R architectures promises high performance on low precision binarized neural networks (BNN). Taking advantage of the RRAM capabilities and allowing to substantially improve the density thanks to the ovonic threshold selector (OTS) selector, this work proposes to replace the standard 1T1R architecture with a denser 1S1R crossbar system, where an HfO 2 -based resistive oxide memory (OxRAM) is co-integrated with a Ge-Se-Sb-N-based OTS. In this context, an extensive experimental study is performed to optimize the 1S1R stack and programming conditions for extended read window margin and endurance characteristics. Focusing on the standard machine learning MNIST image recognition task, we perform offline training simulations in order to define the constraints on the devices during the training process. A very promising bit error rate of ∼10 −3 is demonstrated together with 1S1R 10 4 error-free programming endurance characteristics, fulfilling the requirements for the application of interest. Based on this simulation and experimental study, BNN figures of merit (system footprint, number of weight updates, accuracy, inference speed, electrical consumption per image classification and tolerance to errors) are optimized by engineering the number of learnable parameters of the system. Altogether, an inherent BNN resilience to 1S1R parasitic bit errors is demonstrated.
Sprache
Englisch
Identifikatoren
ISSN: 0268-1242
eISSN: 1361-6641
DOI: 10.1088/1361-6641/ac31e2
Titel-ID: cdi_hal_primary_oai_HAL_hal_03418653v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX