Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 10

Details

Autor(en) / Beteiligte
Titel
The 2018-ongoing Mayotte submarine eruption: Magma migration imaged by petrological monitoring
Ist Teil von
  • Earth and planetary science letters, 2021-10, Vol.571, p.117085, Article 117085
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • •Lavas erupted offshore Mayotte since May 2018 are evolved basanites (∼5 wt% MgO).•The eruption is fed by a deep (>37 km) mantle reservoir.•Primitive magma has undergone at least 50% of crystallization in a ≥10 km3 mantle reservoir.•Magma transfer rate shows that the eruption is steadily supplied from the deep mantle reservoir.•After May 2019, ascending magma intersected a more evolved and shallower magma reservoir. Deep-sea submarine eruptions are the least known type of volcanic activity, due to the difficulty of detecting, monitoring, and sampling them. Following an intense seismic crisis in May 2018, a large submarine effusive eruption offshore the island of Mayotte (Indian Ocean) has extruded at least 6.5 km3 of magma to date, making it the largest monitored submarine eruption as well as the largest effusive eruption on Earth since Iceland's 1783 Laki eruption. This volcano is located along a WNW-ESE volcanic ridge, extending from the island of Petite Terre (east side of Mayotte) to about 3,500 m of water depth. We present a detailed petrological and geochemical description of the erupted lavas sampled by the MAYOBS 1, 2, and 4 cruises between May and July 2019 and use these to infer characteristics and changes through time for the whole magmatic system and its dynamics from the source to the surface. These cruises provide an exceptional time-series of bathymetric, textural, petrological, and geochemical data for the 2018-2019 eruptive period, and hence bring an invaluable opportunity to better constrain the evolution of magma storage and transfer processes during a long-lived submarine eruption. Integrating the petrological signatures of dredged lavas with geophysical data, we show that the crystal-poor and gas-rich evolved basanitic magma was stored at mantle depth (>37 km) in a large (≥10 km3) reservoir and that the eruption was tectonically triggered. As the eruption proceeded, a decrease in ascent rate and/or a pathway change resulted in the incorporation of preexisting differentiated magma stored at a shallower level. Magma transfer from the deep mantle reservoir is syn-eruptive, as indicated by transfer times estimated from diffusion in zoned olivine crystals that are much shorter than the total eruption duration. Our petrological model has important hazard implications concerning the rapid and stealthy awakening of a deep gas-rich magma reservoirs that can produce unusually high output rates and long-lived eruption. Sudden tapping of large crystal poor reservoirs may be the trigger mechanism for other rarely witnessed high-volume (>1 km3) effusive events.
Sprache
Englisch
Identifikatoren
ISSN: 0012-821X
eISSN: 1385-013X
DOI: 10.1016/j.epsl.2021.117085
Titel-ID: cdi_hal_primary_oai_HAL_hal_03353428v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX