Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 365
The Journal of the Acoustical Society of America, 2021-08, Vol.150 (2), p.1286-1299
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Mean absorption estimation from room impulse responses using virtually supervised learning
Ist Teil von
  • The Journal of the Acoustical Society of America, 2021-08, Vol.150 (2), p.1286-1299
Ort / Verlag
Acoustical Society of America
Erscheinungsjahr
2021
Quelle
AIP Journals
Beschreibungen/Notizen
  • In the context of building acoustics and the acoustic diagnosis of an existing room, it introduces and investigates a new approach to estimate the mean absorption coefficients solely from a room impulse response (RIR). This inverse problem is tackled via virtually supervised learning, namely, the RIR-to-absorption mapping is implicitly learned by regression on a simulated dataset using artificial neural networks. Simple models based on well-understood architectures are the focus of this work. The critical choices of geometric, acoustic, and simulation parameters, which are used to train the models, are extensively discussed and studied while keeping in mind the conditions that are representative of the field of building acoustics. Estimation errors from the learned neural models are compared to those obtained with classical formulas that require knowledge of the room's geometry and reverberation times. Extensive comparisons made on a variety of simulated test sets highlight different conditions under which the learned models can overcome the well-known limitations of the diffuse sound field hypothesis underlying these formulas. Results obtained on real RIRs measured in an acoustically configurable room show that at 1 kHz and above, the proposed approach performs comparably to classical models when reverberation times can be reliably estimated and continues to work even when they cannot.
Sprache
Englisch
Identifikatoren
ISSN: 0001-4966
eISSN: 1520-8524
DOI: 10.1121/10.0005888
Titel-ID: cdi_hal_primary_oai_HAL_hal_03331250v1
Format
Schlagworte
Acoustics, Engineering Sciences

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX