Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 42

Details

Autor(en) / Beteiligte
Titel
Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications
Ist Teil von
  • International journal of biological macromolecules, 2018-09, Vol.116, p.45-53
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The current study delineates the preparation of novel chitosan grafted silk fibre reinforced Poly (vinyl alcohol) (PVA) composite films with desirable properties. Although silk fibroin has been extensively used for various biomedical applications, its properties could be further re-tailored for its suitability in the field of regenerative medicine. Chitosan was successfully grafted over silk, via acylation with succinic anhydride and thereby the fibres were incised and used for the preparation of the films. The grafted silk fibre reinforced PVA films were subjected to FTIR studies, microscopic analysis by atomic force microscopy (AFM) and optical microscopy techniques, X-ray diffraction (XRD) analysis and further evaluated for in vitro biocompatibility studies. The composite films demonstrated improved surface roughness with increasing concentration of the fibre and its dispersion in the polymer matrix was observed. Furthermore, in vitro biocompatibility and cellular behaviour such as adhesion and proliferation of mouse fibroblasts as well as astrocyte cells was studied and the results showed improved proliferative activity, when compared to the pristine PVA films. These results were further supported by the results confirmed by MTT assay demonstrating the films to be non-toxic. The efficiency and feasibility of the films to be used for tissue engineering, was further evaluated by haemocompatibility studies using human erythrocytes, thus making them a potential material to be used for biomedical applications. [Display omitted]
Sprache
Englisch
Identifikatoren
ISSN: 0141-8130
eISSN: 1879-0003
DOI: 10.1016/j.ijbiomac.2018.05.019
Titel-ID: cdi_hal_primary_oai_HAL_hal_03319468v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX