Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 2005

Details

Autor(en) / Beteiligte
Titel
Frequency Filtering with a Magnonic Crystal Based on Nanometer-Thick Yttrium Iron Garnet Films
Ist Teil von
  • ACS applied nano materials, 2021-01, Vol.4 (1), p.121-128
Ort / Verlag
American Chemical Society
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Magnonics rely on the wave nature of the magnetic excitations to process information, an approach that is common to many fields such as photonics, phononics, and plasmonics. Nevertheless, magnons, the quanta of spin-wave excitations, have the unique advantage to be at frequencies that are lying between a few GHz to tens of GHz, that is, in the technologically relevant radio-frequency bands for 4G and 5G telecommunications. Furthermore, their typical wavelengths are compatible with on-chip integration. Here, we demonstrate radio-frequency signal filtering by a micron-scale magnonic crystal (MC) based on a nanopatterned 20 nm-thick film of yttrium iron garnet with a minimum feature size of 100 nm where the Bragg vector is set to be k B = 2.1 μm–1. We map the intensity and the phase of spin waves (SWs) propagating in the periodic magnetic structure using phase-resolved microfocus Brillouin light-scattering spectroscopy. Based on these maps, we obtain the SW dispersion and the attenuation characteristics. Efficient filtering is obtained with a frequency selectivity of 20 MHz at an operating frequency of 4.9 GHz. The results are analyzed by performing time- and frequency-resolved full-scale micromagnetic simulations of the MC that reproduce quantitatively the complexity of the harmonic response across the magnonic band gap and allow the identification of the relevant SW-quantized modes, thereby providing an in-depth insight into the physics of SW propagation in periodically modulated nanoscale structures.
Sprache
Englisch
Identifikatoren
ISSN: 2574-0970
eISSN: 2574-0970
DOI: 10.1021/acsanm.0c02382
Titel-ID: cdi_hal_primary_oai_HAL_hal_03213163v1
Format
Schlagworte
Condensed Matter, Physics

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX