Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris
Ist Teil von
Journal of geophysical research. Atmospheres, 2013-02, Vol.118 (4), p.2041-2057
Ort / Verlag
Hoboken, NJ: Blackwell Publishing Ltd
Erscheinungsjahr
2013
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
Ground‐based and airborne volatile organic compound (VOC) measurements in Los Angeles, California, and Paris, France, during the Research at the Nexus of Air Quality and Climate Change (CalNex) and Megacities: Emissions, Urban, Regional and Global Atmospheric Pollution and Climate Effects, and Integrated Tools for Assessment and Mitigation (MEGAPOLI) campaigns, respectively, are used to examine the spatial variability of the composition of anthropogenic VOC urban emissions and to evaluate regional emission inventories. Two independent methods that take into account the effect of chemistry were used to determine the emission ratios of anthropogenic VOCs (including anthropogenic isoprene and oxygenated VOCs) over carbon monoxide (CO) and acetylene. Emission ratios from both methods agree within ±20%, showing the reliability of our approach. Emission ratios for alkenes, alkanes, and benzene are fairly similar between Los Angeles and Paris, whereas the emission ratios for C7–C9 aromatics in Paris are higher than in Los Angeles and other French and European Union urban areas by a factor of 2–3. The results suggest that the emissions of gasoline‐powered vehicles still dominate the hydrocarbon distribution in northern mid‐latitude urban areas, which disagrees with emission inventories. However, regional characteristics like the gasoline composition could affect the composition of hydrocarbon emissions. The observed emission ratios show large discrepancies by a factor of 2–4 (alkanes and oxygenated VOC) with the ones derived from four reference emission databases. A bias in CO emissions was also evident for both megacities. Nevertheless, the difference between measurements and inventory in terms of the overall OH reactivity is, in general, lower than 40%, and the potential to form secondary organic aerosols (SOA) agrees within 30% when considering volatile organic emissions as the main SOA precursors.
Key PointsUrban VOC emission ratios are compared in two modern megacitiesGasoline‐powered vehicles emissions are still the dominant VOC urban sourceObservations/inventory differences are <40% in terms of OH‐reactvity and SOAP