Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 5481
International journal of solids and structures, 2021-01, Vol.208-209, p.167-180
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Hyper-reduced arc-length algorithm for stability analysis in elastoplasticity
Ist Teil von
  • International journal of solids and structures, 2021-01, Vol.208-209, p.167-180
Ort / Verlag
New York: Elsevier Ltd
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In this article an “hyper-reduced” scheme for the Crisfield’s algorithm (Crisfield, 1981) applied to buckling simulations and plastic instabilities is presented. The two linear systems and the ellipse equation entering the algorithm are projected on a reduced space and solved in a reduced integration domain, resulting in a system of “hyper-reduced” equations. Use is made of the Gappy proper orthogonal decomposition to recover stresses outside the reduced integration domain. Various methods are proposed to construct a reduced bases, making use of simulation data obtained with standard finite element method and a stress-based error criterion for the hyper reduced calculations is proposed. A “greedy” algorithm coupled with this error criterion is used to generate intelligently full standard finite element simulations and enrich the reduced base, demonstrating the adequacy of the error criterion. Finally, numerical results pertaining to elastoplastic structures undergoing finite strains, with emphasis on buckling and limit load predictions are presented. A parametric study on the geometry of the structure is carried out in order to determine the domain of validity of the proposed hyper-reduced modeling approach.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX