Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer
Ist Teil von
Remote sensing of environment, 1993, Vol.46 (3), p.331-339
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
1993
Quelle
Elsevier Journal Backfiles on ScienceDirect (DFG Nationallizenzen)
Beschreibungen/Notizen
Since microwave remote sensing techniques are insensitive to cloud cover, they can overcome this strong limitation of optical remote sensing. As in the optical domain, their use for monitoring vegetation canopies requires the development of suitable inversion algorithms. These would allow the estimation of variables such as LAI from radar data. This article investigates the possible use of a semiempirical
water-cloud model in an inversion scheme. Using radar data obtained with a ground-based dual-frequency (C and X bands, 5.7 and 3.3 cm wavelength, respectively) scatterometer on experimental winter wheat fields, it is first verified that a semiempirical
water-cloud model can adequately simulate the backscattering coefficients obtained over the growing season, as a function of LAI and surface soil moisture. Then it is shown that the model can be numerically inverted. This yields simultaneous estimation of LAI and surface soil moisture, the standard deviations of the residuals being respectively 0.64 m
2 m
−2 and 0.065 cm
3 cm
−3. Finally, the influence of radar measurement errors on the inversion scheme is quantified by means of a simulation study. This shows that a 1 dB accuracy of the radar is required for a 1 m
2 m
−2 precision of the estimated LAI.