Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 31

Details

Autor(en) / Beteiligte
Titel
On the use of instrumented indentation to characterize the mechanical properties of functionally graded binary alloys manufactured by additive manufacturing
Ist Teil von
  • Materials today communications, 2020-12, Vol.25, p.101451, Article 101451
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •A Ti-xNb FGM (where x=0, 26, 48, 75 and 100%) was builded by CLAD® additive manufacturing process.•The Young’s modulus and the work hardening law of each part of the FGM was obtained from instrumented indentation.•A good correlation between the mechanical properties obtained from tensile test and indentation was obtained.•For all compositions of the Ti-Nb FGM, Young’s Modulus values obtained from IIT are consistent with results from literature. The mechanical properties of a Ti-xNb functionally graded material (FGM) created by using an additive manufacturing process (CLAD®) were obtained using a spherical instrumented indentation test (IIT). The aim of this paper is to demonstrate the great suitability of the indentation test coupled with FGM for not only obtaining the hardness of a material, but also obtaining other mechanical properties such as Young’s modulus, yield stress and the work-hardening exponent for heterogeneous materials. In the first step, results obtained from the instrumented indentation test were compared with those obtained from the tensile test for the same materials. These results show that these two tests highlight a similar evolution in the mechanical properties. In the second step, and after validating the efficiency of the IIT in obtaining mechanical properties, the FGM Ti-xNb was successfully identified using only IIT. This paper demonstrates that the different mechanical properties of all the compositions of a phase diagram can be measured very easily and quickly while minimizing the number of samples.
Sprache
Englisch
Identifikatoren
ISSN: 2352-4928
eISSN: 2352-4928
DOI: 10.1016/j.mtcomm.2020.101451
Titel-ID: cdi_hal_primary_oai_HAL_hal_02903744v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX