Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 9

Details

Autor(en) / Beteiligte
Titel
Relating jet structure to photometric variability: the Herbig Ae star HD 163296
Ist Teil von
  • Astronomy and astrophysics (Berlin), 2014-03, Vol.563, p.np-np
Ort / Verlag
Goddard Space Flight Center: EDP Sciences
Erscheinungsjahr
2014
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Herbig Ae/Be stars are intermediate-mass pre-main sequence stars surrounded by circumstellar dust disks. Some are observed to produce jets, whose appearance as a sequence of shock fronts (knots) suggests a past episodic outflow variability. This “jet fossil record” can be used to reconstruct the outflow history. We present the first optical to near-infrared (NIR) spectra of the jet from the Herbig Ae star HD 163296, obtained with VLT/X-shooter. We determine the physical conditions in the knots and also their kinematic “launch epochs”. Knots are formed simultaneously on either side of the disk, with a regular interval of ~16 yr. The velocity dispersion versus jet velocity and the energy input are comparable between both lobes. However, the mass-loss rate, velocity,and shock conditions are asymmetric. We find Ṁjet/Ṁacc ~ 0.01−0.1, which is consistent with magneto-centrifugal jet launching models. No evidence of any dust is found in the high-velocity jet, suggesting a launch region within the sublimation radius (<0.5 au). The jet inclination measured from proper motions and radial velocities confirms that it is perpendicular to the disk. A tentative relation is found between the structure of the jet and the photometric variability of the central source. Episodes of NIR brightening were previously detected and attributed to a dusty disk wind. We report for the first time significant optical fadings lasting from a few days up to a year, coinciding with the NIR brightenings. These are very likely caused by dust lifted high above the disk plane, and this supports the disk wind scenario. The disk wind is launched at a larger radius than the high-velocity atomic jet, although their outflow variability may have a common origin. No significant relation between outflow and accretion variability could be established. Our findings confirm that this source undergoes periodic ejection events, which may be coupled with dust ejections above the disk plane.
Sprache
Englisch
Identifikatoren
ISSN: 0004-6361
eISSN: 1432-0746
DOI: 10.1051/0004-6361/201323092
Titel-ID: cdi_hal_primary_oai_HAL_hal_02617761v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX