Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Decision‐Making and Flood Risk Uncertainty: Statistical Data Set Analysis for Flood Risk Assessment
Ist Teil von
Water resources research, 2018-10, Vol.54 (10), p.7291-7308
Ort / Verlag
Washington: John Wiley & Sons, Inc
Erscheinungsjahr
2018
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
Floods are a significant issue worldwide with over 1 billion people living in areas of potential flood risk. With climate change these risks are anticipated to increase, but there is great uncertainty associated with future projections, which poses challenges to those making decisions on flood management. Climate change projections which explicitly capture climate model parameters uncertainty are available in the United Kingdom; however, their use by practitioners, rather than researchers, has so far been limited. This paper takes an inclusive approach, working with end users, to answer practitioner relevant questions regarding future climate change influence for flood hazards. The method developed demonstrates the findings across Scotland, United Kingdom and investigates (i) the regional impacts to extreme flows and the associated uncertainty, (ii) the changes in extreme peak flows in terms of frequency, and (iii) the physical and hydroclimatic factors controlling these results. The method used industry standard statistical methods, driven by practitioner requirements, and explicitly includes the statistical uncertainty in the climate and extreme value distribution models in extreme flow estimates. Results are analyzed using hierarchical clustering and decision tree analysis, and the subsequent trends are shown to be constrained by different hydrological, climatic, and physical catchment characteristics. Results suggest that there is a high probability that low return period peak flow events would exceed the baseline extreme high return period event by the 2080s, which has significant implications for future‐proofing infrastructure design. This study provides a practical example and outputs resulting from collaboration between research and industry practices.
Key Points
Changes in peak flows and the associated uncertainties are driven by diverse physical and hydrometeorological controlling factors
There is a high probability that low‐frequency peak flow events would become 2 to 4 times more frequent by the 2080s across Scotland
Coupling bottom‐up to top‐down approaches in climate change impact studies would allow closing the gap between research and practice