Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 53

Details

Autor(en) / Beteiligte
Titel
Local and regional drivers of taxonomic homogenization in stream communities along a land use gradient
Ist Teil von
  • Global ecology and biogeography, 2019-11, Vol.28 (11), p.1597-1609
Ort / Verlag
Oxford: Wiley Subscription Services, Inc
Erscheinungsjahr
2019
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Aim The interaction of land use with local versus regional processes driving biological homogenization (β‐diversity loss) is poorly understood. We explored: (a) stream β‐diversity responses to land cover (forest versus agriculture) in terms of physicochemistry and physicochemical heterogeneity; (b) whether these responses were constrained by the regional species pool, i.e. γ‐diversity, or local assembly processes through local (α) diversity; (c) whether local assembly operated through the regional species abundance distribution (SAD) or intraspecific spatial aggregation; and (d) the dependence on body size, dispersal capacity and trophic level (producer versus consumer). Location USA, Canada and France. Time period 1993–2012. Major taxa studied Stream diatoms, insects and fish. Methods We analysed six datasets totalling 1,225 stream samples. We compared diversity responses to eutrophication and physicochemical heterogeneity in forested versus agricultural streams with regression methods. Null models quantified the contribution of local assembly to β‐diversity (β‐deviance, βDEV) for both types of land covers and partitioned it into fractions explained by the regional SAD (βSAD) versus aggregation (βAGG). Results Eutrophication explained homogenization and more uneven regional SADs across groups, but local and regional biodiversity responses differed across taxa. The βDEV was insensitive to land use. The βSAD largely exceeded βAGG and was higher in agriculture. Main conclusions Eutrophication but not physicochemical heterogeneity of agricultural streams underlay β‐diversity loss in diatoms, insects and fish. Agriculture did not constrain the magnitude of local versus regional effects on β‐diversity but controlled the local assembly mechanisms. Although the SAD fraction dominated in both land covers, it increased further in agriculture at the expense of aggregation. Notably, the regional SADs were more uneven in agriculture, exhibiting excess common species or stronger dominance. Diatoms and insects diverged from fish in terms of biodiversity, SAD shape and βDEV patterns, suggesting an overriding role of body size and/or dispersal capacity compared with trophic position.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX