Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 19

Details

Autor(en) / Beteiligte
Titel
Arsenic and lead mobility: From tailing materials to the aqueous compartment
Ist Teil von
  • Applied geochemistry, 2016-01, Vol.64, p.10-21
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • This study concerns the mineralogy of the tailings of a former Ag–Pb mine (Auzelles district, France) and the contribution of the waste materials to the heavy metal dissemination in the environment. Accumulation of metals in fish flesh was reported and this pollution is attributed to past mining activities. Tailings were studied to establish the major transfer schemes of As and Pb in order to understand their mobility that leads to contamination of a whole ecosystem. Mineralogical investigation, solubility and compliance tests were performed to assess the stability of the metal-bearing phases. Among the various metallic elements measured, As and Pb show the highest bulk concentrations (up to 0.7% and 6.3% respectively) especially for samples presenting near neutral pH values. According to X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Electron Probe Micro-Analysis (EPMA) and micro-Raman spectrometry (μRS), tailings mineralogy still contain primary minerals such as sulfides (e.g., galena, pyrite), phosphates (monazite, apatite) and/or carbonates (e.g., (hydro-)cerussite, dolomite, siderite). Sulfates (e.g., anglesite, lanarkite, plumbojarosite and beudantite) are the main secondary metal-bearing phases with other interesting phases accounting for metals mobility such as Fe and/or Pb and/or Mn oxides (e.g., lepidocrocite, goethite -up to 15 wt% of Pb was measured-, plumboferrite-type phase, mimetite). The lowest Pb solubilities were obtained at pH 8–9 and at a larger range than for As for which the lowest solubilities are reached around pH 6–7. At this minimum solubility pH value, Pb concentrations released still over exceed the National Environmental Quality Standards (NEQS), whatever the samples. The highest solubility is reached at pH 2 for both elements whatever the considered sample. This represents up to 51% of total Pb and up to 46% of total As remobilized and concentrations exceeding the NEQS. As and Pb released mainly depends on the Fe/Mn oxides (e.g., goethite, lepidocrocite) and carbonates (cerussite) which are the less stable phases. Compliance tests also show that Pb concentrations released are higher than the upper limit for hazardous waste landfills. Determination of the mineralogy allows understanding both the solubility and leaching test experiments results, as well as to forecast the impact of the residues on the water quality at a mid-term scale. •The mineralogy of As and Pb mainly control their mobility.•Plumbojarosite, anglesite and beudantite ensure As and Pb stability.•Carbonates and Fe/Mn oxides are the less stable As and Pb host phases.•Remobilized Pb concentrations exceed regulation limit values for wastes and water.
Sprache
Englisch
Identifikatoren
ISSN: 0883-2927
eISSN: 1872-9134
DOI: 10.1016/j.apgeochem.2015.11.002
Titel-ID: cdi_hal_primary_oai_HAL_hal_02156566v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX