Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells
Ist Teil von
Diabetologia, 2009-07, Vol.52 (7), p.1391-1399
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2009
Quelle
MEDLINE
Beschreibungen/Notizen
Aims/hypothesis
Displaying immunomodulatory capacities, mesenchymal stem cells (MSCs) are considered as beneficial agents for autoimmune diseases. The aim of this study was to examine the ability of MSCs to prevent autoimmune diabetes in the NOD mouse model.
Methods
Prevention of spontaneous insulitis or of diabetes was evaluated after a single i.v. injection of MSCs in 4-week-old female NOD mice, or following the co-injection of MSCs and diabetogenic T cells in irradiated male NOD recipients, respectively. The frequency of CD4
+
FOXP3
+
cells and
Foxp3
mRNA levels in the spleen of male NOD recipients were also quantified. In vivo cell homing was assessed by monitoring 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled T cells or MSCs. In vitro, cell proliferation and cytokine production were assessed by adding graded doses of irradiated MSCs to insulin B9–23 peptide-specific T cell lines in the presence of irradiated splenocytes pulsed with the peptide.
Results
MSCs reduced the capacity of diabetogenic T cells to infiltrate pancreatic islets and to transfer diabetes. This protective effect was not associated with the modification of diabetogenic T cell homing, but correlated with a preferential migration of MSCs to pancreatic lymph nodes. While injection of diabetogenic T cells resulted in a decrease in levels of FOXP3
+
regulatory T cells, this decrease was inhibited by MSC co-transfer. Moreover, MSCs were able to suppress both allogeneic and insulin-specific proliferative responses in vitro. This suppressive effect was associated with the induction of IL10-secreting FOXP3
+
T cells.
Conclusions/interpretation
MSCs prevent autoimmune beta cell destruction and subsequent diabetes by inducing regulatory T cells. MSCs may thus offer a novel cell-based approach for the prevention of autoimmune diabetes and for islet cell transplantation.