Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys
Ist Teil von
Acta materialia, 2014-07, Vol.73, p.83-96
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn5Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn5Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16T). In addition, electron backscatter diffraction analysis revealed that the 〈0001〉-crystal direction of the Zn5Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid.