Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 8217
Bioinformatics (Oxford, England), 2016-10, Vol.32 (20), p.3089-3097
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
ACE: adaptive cluster expansion for maximum entropy graphical model inference
Ist Teil von
  • Bioinformatics (Oxford, England), 2016-10, Vol.32 (20), p.3089-3097
Ort / Verlag
England: Oxford University Press (OUP)
Erscheinungsjahr
2016
Quelle
MEDLINE
Beschreibungen/Notizen
  • Graphical models are often employed to interpret patterns of correlations observed in data through a network of interactions between the variables. Recently, Ising/Potts models, also known as Markov random fields, have been productively applied to diverse problems in biology, including the prediction of structural contacts from protein sequence data and the description of neural activity patterns. However, inference of such models is a challenging computational problem that cannot be solved exactly. Here, we describe the adaptive cluster expansion (ACE) method to quickly and accurately infer Ising or Potts models based on correlation data. ACE avoids overfitting by constructing a sparse network of interactions sufficient to reproduce the observed correlation data within the statistical error expected due to finite sampling. When convergence of the ACE algorithm is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We illustrate this method on a variety of biological and artificial datasets and compare it to state-of-the-art approximate methods such as Gaussian and pseudo-likelihood inference. We show that ACE accurately reproduces the true parameters of the underlying model when they are known, and yields accurate statistical descriptions of both biological and artificial data. Models inferred by ACE more accurately describe the statistics of the data, including both the constrained low-order correlations and unconstrained higher-order correlations, compared to those obtained by faster Gaussian and pseudo-likelihood methods. These alternative approaches can recover the structure of the interaction network but typically not the correct strength of interactions, resulting in less accurate generative models. The ACE source code, user manual and tutorials with the example data and filtered correlations described herein are freely available on GitHub at https://github.com/johnbarton/ACE CONTACTS: jpbarton@mit.edu, cocco@lps.ens.frSupplementary information: Supplementary data are available at Bioinformatics online.
Sprache
Englisch
Identifikatoren
ISSN: 1367-4803
eISSN: 1367-4811
DOI: 10.1093/bioinformatics/btw328
Titel-ID: cdi_hal_primary_oai_HAL_hal_01528510v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX