Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 30934
IEEE transactions on automatic control, 2016-11, Vol.61 (11), p.3452-3463
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Wave Equation With Cone-Bounded Control Laws
Ist Teil von
  • IEEE transactions on automatic control, 2016-11, Vol.61 (11), p.3452-3463
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • This paper deals with a wave equation with a one-dimensional space variable, which describes the dynamics of string deflection. Two kinds of control are considered: a distributed action and a boundary control. It is supposed that the control signal is subject to a cone-bounded nonlinearity. This kind of feedback laws includes (but is not restricted to) saturating inputs. By closing the loop with such a nonlinear control, it is thus obtained a nonlinear partial differential equation, which is the generalization of the classical 1D wave equation. The well-posedness is proven by using nonlinear semigroups techniques. Considering a sector condition to tackle the control nonlinearity and assuming that a tuning parameter has a suitable sign, the asymptotic stability of the closed-loop system is proven by Lyapunov techniques. Some numerical simulations illustrate the asymptotic stability of the closed-loop nonlinear partial differential equations.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX