Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 2461

Details

Autor(en) / Beteiligte
Titel
Leaf lipid degradation in soils and surface sediments: A litterbag experiment
Ist Teil von
  • Organic geochemistry, 2017-02, Vol.104, p.35-41
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2017
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • [Display omitted] •Biomarker content varied substantially in soil and at water-sediment interface.•Almost all lipids were still present after 2yr degradation but had different decay profiles.•Although fatty lipid content decreased to<10% after 2yr, main distribution pattern remained unchanged. The fate of leaf lipids upon early diagenesis was monitored in a two year litterbag experiment in a soil and at the water-sediment interface of an adjacent pond. The biomarker content of degrading leaves exhibited substantial variability among litterbags, even for a given time step within a given environmental condition, likely reflecting natural microenvironmental variability. Due to this variability and the oxic conditions in the pond, no substantial difference between the soil and the pond could be evidenced in the biomarker degradation pattern. An occasional increase in the abundance of several biomarkers (β- sitosterol, oleanolic acid, C16 phytyl ester, C27n-alkane) was also noted during the experiment, which was attributed to release of bound compounds and/or an external contribution. Nevertheless, absolute quantification showed that the concentration of all lipid constituents was reduced, but they exhibited different decay profiles: (i) rapid extensive degradation (phytyl ester), (ii) exponential-like decrease (fatty lipids) and (iii) variable degradation profile (polycyclic triterpenoids). However, all the main constituents initially present in the senescent leaves were still detected after two years of degradation in both environments. Fatty lipids abundances generally decreased to<10% of the initial content but the main distribution features (carbon number maximum and predominance) remained unchanged. The results thus tend to validate their use as proxy for source and environment in ancient organic matter. They also suggest that, on a mid-term basis, a plant biomarker signature is not substantially affected by differential degradation in soil and at the water-sediment interface, at least for a qualitative approach.
Sprache
Englisch
Identifikatoren
ISSN: 0146-6380
eISSN: 1873-5290
DOI: 10.1016/j.orggeochem.2016.12.001
Titel-ID: cdi_hal_primary_oai_HAL_hal_01414796v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX