Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 59

Details

Autor(en) / Beteiligte
Titel
Quasiparticle spectra of 2H−NbSe2: Two-band superconductivity and the role of tunneling selectivity
Ist Teil von
  • Physical review. B, Condensed matter and materials physics, 2015-10, Vol.92
Ort / Verlag
American Physical Society
Erscheinungsjahr
2015
Quelle
PROLA - Physical Review Online Archive
Beschreibungen/Notizen
  • We have studied the superconducting state of 2H−NbSe2 by scanning tunneling spectroscopy along two different crystal orientations, the c and the a/b axes. Along the c axis a large gap is dominant in the spectra, while a smaller gap is measured along the a/b axis. We show that these spectra are accurately described by the McMillan model where the small gap is induced through the coupling to the band associated with the large gap. In order to assign the small and large gaps to specific parts of the 2H−NbSe2 Fermi surface, the electronic structure was studied using first-principles calculations. While we cannot exclude the possibility of intrinsic anisotropy of the gaps, we propose that the large gap opens in the Fermi surface cylinders located around the corner K points while the sheets located around Γ are associated with the small gap. An additional component of the Fermi surface, a selenium based pocket, plays an essential role in the tunneling process. The role of the charge density wave occurring in this material is also discussed. Finally, we are able to give a coherent description of the observed characteristics of the tunneling spectra of 2H−NbSe2 as well as the differences with 2H−NbS2 where no charge density wave state is present. Further experimental work, such as high-resolution ARPES, would be very useful to confirm our interpretation. The approach and modeling developed here could also be relevant for other compounds of the dichalcogenide family.
Sprache
Englisch
Identifikatoren
ISSN: 1098-0121
eISSN: 1550-235X
DOI: 10.1103/PhysRevB.92.134510
Titel-ID: cdi_hal_primary_oai_HAL_hal_01387356v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX