Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 166

Details

Autor(en) / Beteiligte
Titel
Titan’s temporal evolution in stratospheric trace gases near the poles
Ist Teil von
  • Icarus (New York, N.Y. 1962), 2016-05, Vol.270, p.409-420
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •We infer the thermal and chemical evolution of Titan’s stratosphere (2010–2014).•We find different behavior for mid and high northern and southern latitudes.•The temperature decrease from 2010 to 2014 near the south pole reaches 40K.•The abundances of some species have increased dramatically since 2012 at 70°S.•We bracket the time frame when the atmospheric flow reverses from S to N and N to S. We analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan’s Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan’s south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013–2014, and at 70°S relative to 50°S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663cm−1 HC3N and the C6H6 674cm−1 emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70°S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3–4years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1–2 orders of magnitude). This is a strong indication of the rapid and sudden buildup of the gaseous inventory in the southern stratosphere during 2013–2014, as expected as the pole moves deeper into winter shadow. Subsidence gases that accumulate in the absence of ultraviolet sunlight, evidently increased quickly since 2012 and some of them may be responsible also for the reported haze decrease in the north and its appearance in the south at the same time.
Sprache
Englisch
Identifikatoren
ISSN: 0019-1035
eISSN: 1090-2643
DOI: 10.1016/j.icarus.2015.08.027
Titel-ID: cdi_hal_primary_oai_HAL_hal_01198804v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX