Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 25

Details

Autor(en) / Beteiligte
Titel
Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study
Ist Teil von
  • Astronomy and astrophysics (Berlin), 2011-10, Vol.534, p.A26
Ort / Verlag
Les Ulis: EDP Sciences
Erscheinungsjahr
2011
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Context. Were a potentially habitable planet to be discovered, the next step would be the search for an atmosphere and its characterization. Eventually, surface conditions, hence habitability, and biomarkers as indicators for life would be assessed. Aims. The super-Earth candidate Gliese (GL) 581 d is the first potentially habitable extrasolar planet so far discovered. Therefore, GL 581 d is used to illustrate a hypothetical detailed spectroscopic characterization of such planets. Methods. Atmospheric profiles for a wide range of possible one-dimensional (1D) radiative-convective model scenarios of GL 581 d were used to calculate high-resolution synthetic emission and transmission spectra. Atmospheres were assumed to be composed of N2, CO2, and H2O. From the spectra, signal-to-noise ratios (SNRs) were calculated for a telescope such as the planned James Webb Space Telescope (JWST). Exposure times were set to be equal to the duration of one transit. Results. The presence of the model atmospheres can be clearly inferred from the calculated synthetic spectra thanks to strong water and carbon-dioxide absorption bands. Surface temperatures can be inferred for model scenarios with optically thin spectral windows. Dense, CO2-rich (potentially habitable) scenarios do not enable us to determine the surface temperatures nor assess habitability. Degeneracies between CO2 concentration and surface pressure complicate the interpretation of the calculated spectra, hence the determination of atmospheric conditions. Still, inferring approximative CO2 concentrations and surface pressures is possible. In practice, detecting atmospheric signals is challenging because the calculated SNR values are well below unity in most of the cases. The SNR for a single transit was only barely larger than unity in some near-IR bands for transmission spectroscopy. Most interestingly, the false-positive detection of biomarker candidates such as methane and ozone might be possible in low resolution spectra because CO2 absorption bands overlap biomarker spectral bands. This can be avoided, however, by observing all main CO2 IR bands instead of concentrating on, e.g., the 4.3 or 15 μm bands only. Furthermore, a masking of ozone signatures by CO2 absorption bands is shown to be possible. Simulations imply that such a false-negative detection of ozone would be possible even for rather high ozone concentrations of up to 10-5.
Sprache
Englisch
Identifikatoren
ISSN: 0004-6361
eISSN: 1432-0746, 1432-0756
DOI: 10.1051/0004-6361/201117091
Titel-ID: cdi_hal_primary_oai_HAL_hal_00620201v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX