Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 37

Details

Autor(en) / Beteiligte
Titel
Effects of management regine and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils
Ist Teil von
  • Environmental microbiology, 2006, Vol.8 (6), p.1005-1016
Ort / Verlag
Society for Applied Microbiology and Wiley-Blackwell
Erscheinungsjahr
2006
Link zum Volltext
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • Management by combined grazing and mowing events is commonly used in grasslands, which influences the activity and composition of soil bacterial communities. Whether observed effects are mediated by management-induced disturbances, or indirectly by changes in the identity of major plant species, is still unknown. To address this issue, we quantified substrate-induced respiration (SIR), and the nitrification, denitrification and free-living N2-fixation enzyme activities below grass tufts of three major plant species (Holcus lanatus, Arrhenatherum elatius and Dactylis glomerata) in extensively or intensively managed grasslands. The genetic structures of eubacterial, ammonia oxidizing, nitrate reducing, and free-living N2-fixing communities were also characterized by ribosomal intergenic spacer analysis, and denaturing gradient gel electrophoresis (DGGE) or restriction fragment length polymorphism (RFLP) targeting group-specific genes. SIR was not influenced by management and plant species, whereas DEA was influenced only by plant species, and management x plant species interactions were observed for fixation and nitrification enzyme activities. Changes in nitrification enzyme activity were likely largely explained by the observed changes in ammonium concentration, whereas N availability was not a major factor explaining changes in denitrification and fixation enzyme activities. The structures of eubacterial and free-living N2-fixing communities were essentially controlled by management, whereas the diversity of nitrate reducers and ammonia oxidizers depended on both management and plant species. For each functional group, changes in enzyme activity were not correlated or were weakly correlated to overall changes in genetic structure, but around 60% of activity variance was correlated to changes in 5 RFLP or DGGE bands. Although our conclusions should be tested for other ecosystems and seasons, these results show that predicting microbial changes induced by management in grasslands requires consideration of management x plant species interactions.
Sprache
Englisch
Identifikatoren
ISSN: 1462-2912
eISSN: 1462-2920
DOI: 10.1111/j.1462-2920.2006.00992.x
Titel-ID: cdi_hal_primary_oai_HAL_hal_00124647v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX