Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 4339
International journal of computer vision, 2020-11, Vol.128 (10-11), p.2586-2606
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Train Sparsely, Generate Densely: Memory-Efficient Unsupervised Training of High-Resolution Temporal GAN
Ist Teil von
  • International journal of computer vision, 2020-11, Vol.128 (10-11), p.2586-2606
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Training of generative adversarial network (GAN) on a video dataset is a challenge because of the sheer size of the dataset and the complexity of each observation. In general, the computational cost of training GAN scales exponentially with the resolution. In this study, we present a novel memory efficient method of unsupervised learning of high-resolution video dataset whose computational cost scales only linearly with the resolution. We achieve this by designing the generator model as a stack of small sub-generators and training the model in a specific way. We train each sub-generator with its own specific discriminator. At the time of the training, we introduce between each pair of consecutive sub-generators an auxiliary subsampling layer that reduces the frame-rate by a certain ratio. This procedure can allow each sub-generator to learn the distribution of the video at different levels of resolution. We also need only a few GPUs to train a highly complex generator that far outperforms the predecessor in terms of inception scores.
Sprache
Englisch
Identifikatoren
ISSN: 0920-5691
eISSN: 1573-1405
DOI: 10.1007/s11263-020-01333-y
Titel-ID: cdi_gale_infotracacademiconefile_A636368461

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX