Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature
Ist Teil von
Water resources research, 2007-05, Vol.43 (5), p.W05407-n/a
Ort / Verlag
American Geophysical Union
Erscheinungsjahr
2007
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
A time series simulation scheme based on wavelet decomposition coupled to an autoregressive model is presented for hydroclimatic series that exhibit band-limited low-frequency variability. Many nonlinear dynamical systems generate time series that appear to have amplitude- and frequency-modulated oscillations that may correspond to the recurrence of different solution regimes. The use of wavelet decomposition followed by an autoregressive model of each leading component is explored as a model for such time series. The first example considered is the Lorenz-84 low-order model of extratropical circulation, which has been used to illustrate how chaos and intransitivity (multiple stable solutions) can lead to low-frequency variability. The central England temperature (CET) time series, the NINO3.4 series that is a surrogate for El Nino-Southern Oscillation, and seasonal rainfall from Everglades National Park, Florida, are then modeled with this approach. The proposed simulation model yields better results than a traditional linear autoregressive (AR) time series model in terms of reproducing the time-frequency properties of the observed rainfall, while preserving the statistics usually reproduced by the AR models.