Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells
Ist Teil von
  • Radiation physics and chemistry (Oxford, England : 1993), 2011-02, Vol.80 (2), p.219-229
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2011
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm −2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.
Sprache
Englisch
Identifikatoren
ISSN: 0969-806X
eISSN: 1879-0895
DOI: 10.1016/j.radphyschem.2010.07.036
Titel-ID: cdi_elsevier_sciencedirect_doi_10_1016_j_radphyschem_2010_07_036

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX