Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Growth and characterization of thermal properties of single crystals of solid solutions MnxFe1-xIn2S4
Ist Teil von
  • Journal of crystal growth, 2024-08, Vol.640, p.127763, Article 127763
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2024
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Monocrystals of solid solutions MnxFe1-xIn2S4 were fabricated via Bridgman method.•Comparative analysis of the chemical composition, crystal structure and thermal properties was carried out.•An analytical expression for describing the thermal conductivity dependence of solid solutions MnxFe1-xIn2S4 is presented. Polycrystals of solid solutions MnxFe1−xIn2S4 were prepared by the two-temperature method. The degrees of phase transformations were defined by differential thermal analysis (DTA), and a phase diagram of the MnIn2S4–FeIn2S4 system was obtained. The phase diagram is described by a narrow crystallization interval and classified as type I according to the Roozeboom classification. Single crystals of solid solutions MnxFe1−xIn2S4 were grown by vertical gradient freeze method of synthesized polycrystals. The elemental composition of the obtained samples was in good agreement with the calculated composition. The structure was defined by XRD. Prepared samples had a cubic structure, and the parameters of the elementary cell were calculated by the method of least squares. The thermal linear expansion coefficient was investigated in the temperature range T = 80–550 K. Based on the obtained data, the values of the Debye temperature and the root-mean-square atomic shifts were determined, and their concentration dependencies are presented. The thermal conductivity was studied using the absolute method in the temperature range T = 300–550 K. The form of the concentration dependence, the contribution of the lattice and electronic components, and an analytical dependence of the thermal conductivity for the entire range of solid solution were established.
Sprache
Englisch
Identifikatoren
ISSN: 0022-0248
eISSN: 1873-5002
DOI: 10.1016/j.jcrysgro.2024.127763
Titel-ID: cdi_elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2024_127763

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX