Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Biomonitoring urinary pesticide metabolites in preschool children by supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress
Ist Teil von
  • Journal of Chromatography A, 2024-06, Vol.1725, p.464944, Article 464944
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2024
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • •Novel biomonitoring method for urinary pesticide metabolites.•Validated method with low detection limits and easy to implement.•Unveiled association between pesticide exposure and oxidative stress in preschool children.•Para-nitrophenol significantly contributed to elevated oxidative stress levels. Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert‑butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 μg/L to 0.04 μg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 μg/L for boys and 4.90 μg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX