Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 27

Details

Autor(en) / Beteiligte
Titel
Development and validation of multivariable prediction models of remission, recovery, and quality of life outcomes in people with first episode psychosis: a machine learning approach
Ist Teil von
  • The Lancet. Digital health, 2019-10, Vol.1 (6), p.e261-e270
Ort / Verlag
England: Elsevier
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • Outcomes for people with first-episode psychosis are highly heterogeneous. Few reliable validated methods are available to predict the outcome for individual patients in the first clinical contact. In this study, we aimed to build multivariable prediction models of 1-year remission and recovery outcomes using baseline clinical variables in people with first-episode psychosis. In this machine learning approach, we applied supervised machine learning, using regularised regression and nested leave-one-site-out cross-validation, to baseline clinical data from the English Evaluating the Development and Impact of Early Intervention Services (EDEN) study (n=1027), to develop and internally validate prediction models at 1-year follow-up. We assessed four binary outcomes that were recorded at 1 year: symptom remission, social recovery, vocational recovery, and quality of life (QoL). We externally validated the prediction models by selecting from the top predictor variables identified in the internal validation models the variables shared with the external validation datasets comprised of two Scottish longitudinal cohort studies (n=162) and the OPUS trial, a randomised controlled trial of specialised assertive intervention versus standard treatment (n=578). The performance of prediction models was robust for the four 1-year outcomes of symptom remission (area under the receiver operating characteristic curve [AUC] 0·703, 95% CI 0·664-0·742), social recovery (0·731, 0·697-0·765), vocational recovery (0·736, 0·702-0·771), and QoL (0·704, 0·667-0·742; p<0·0001 for all outcomes), on internal validation. We externally validated the outcomes of symptom remission (AUC 0·680, 95% CI 0·587-0·773), vocational recovery (0·867, 0·805-0·930), and QoL (0·679, 0·522-0·836) in the Scottish datasets, and symptom remission (0·616, 0·553-0·679), social recovery (0·573, 0·504-0·643), vocational recovery (0·660, 0·610-0·710), and QoL (0·556, 0·481-0·631) in the OPUS dataset. In our machine learning analysis, we showed that prediction models can reliably and prospectively identify poor remission and recovery outcomes at 1 year for patients with first-episode psychosis using baseline clinical variables at first clinical contact. Lundbeck Foundation.
Sprache
Englisch
Identifikatoren
ISSN: 2589-7500
eISSN: 2589-7500
DOI: 10.1016/S2589-7500(19)30121-9
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_fc7422f54464453fa283a753419c647f

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX