Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 346
Scientific reports, 2023-03, Vol.13 (1), p.5177-5177, Article 5177
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs
Ist Teil von
  • Scientific reports, 2023-03, Vol.13 (1), p.5177-5177, Article 5177
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Determining the severity of dental crowding and the necessity of tooth extraction for orthodontic treatment planning are time-consuming processes and there are no firm criteria. Thus, automated assistance would be useful to clinicians. This study aimed to construct and evaluate artificial intelligence (AI) systems to assist with such treatment planning. A total of 3,136 orthodontic occlusal photographs with annotations by two orthodontists were obtained. Four convolutional neural network (CNN) models, namely ResNet50, ResNet101, VGG16, and VGG19, were adopted for the AI process. Using the intraoral photographs as input, the crowding group and the necessity of tooth extraction were obtained. Arch length discrepancy analysis with AI-detected landmarks was used for crowding categorization. Various statistical and visual analyses were conducted to evaluate the performance. The maxillary and mandibular VGG19 models showed minimum mean errors of 0.84 mm and 1.06 mm for teeth landmark detection, respectively. Analysis of Cohen’s weighted kappa coefficient indicated that crowding categorization performance was best in VGG19 (0.73), decreasing in the order of VGG16, ResNet101, and ResNet50. For tooth extraction, the maxillary VGG19 model showed the highest accuracy (0.922) and AUC (0.961). By utilizing deep learning with orthodontic photographs, dental crowding categorization and diagnosis of orthodontic extraction were successfully determined. This suggests that AI can assist clinicians in the diagnosis and decision making of treatment plans.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-023-32514-7
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_f86741c6b4a04cbc987bd51e93cf7c51

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX