Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 138

Details

Autor(en) / Beteiligte
Titel
EMD-based data augmentation method applied to handwriting data for the diagnosis of Essential Tremor using LSTM networks
Ist Teil von
  • Scientific reports, 2022-07, Vol.12 (1), p.12819-12819, Article 12819
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The increasing capacity of today’s technology represents great advances in diagnosing diseases using standard procedures supported by computer science. Deep learning techniques are able to extract the characteristics of temporal signals to study their patterns and diagnose diseases such as essential tremor. However, these techniques require a large amount of data to train the neural network and achieve good results, and the more data the network has, the more accurate the final model implemented. In this work we propose the use of a data augmentation technique to improve the accuracy of a Long short-term memory system in the diagnosis of essential tremor. For this purpose, the multivariate Empirical Mode Decomposition method will be used to decompose the original temporal signals collected from control subjects and patients with essential tremor. The time series obtained from the decomposition, covering different frequency ranges, will be randomly shuffled and combined to generate new artificial samples for each group. Then, both the generated artificial samples and part of the real samples will be used to train the LSTM network, and the remaining original samples will be used to test the model. The experimental results demonstrate the capability of the proposed method, which is compared to a set of 10 different data augmentation methods, and in all cases outperforms all other methods. In the best case, the proposed method increases the accuracy of the classifier from 83.20% to almost 93% when artificial samples are generated, which is a promising result when only small databases are available.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-022-16741-y
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_f1932b79fa4c4cf3b9aed9da8c544d24

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX